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Abstract 

 

This paper proposes a simple and efficient framework for building consistent climate 

projections from an ensemble of Global Circulation Models (GCMs) at the local scale 

required for impact studies. The proposed method relies on a fine-scale gridded baseline 

climatology and consists of the following steps: (1) building appropriate precipitation 

and temperature time series from land areas covered by GCM sea cells; (2) correction of 

GCM outputs inherent biases through “quantile-based mapping”; and (3) disaggregation 

of bias-corrected outputs with monthly spatial anomalies between GCM-specific and 

observed spatial scales. The overall framework is applied to derive 21st century seasonal 

climate projections and interannual variability for the UK based on an ensemble of 6 

GCMs run under two different emissions scenarios. Results show a large dispersion of 

changes within the multi-GCM ensemble, along with a good comparison between 

scenarios from individual ensemble members and from previous UK and European 

studies using dynamically downscaled outputs from corresponding GCMs. The 

framework presented in this paper provides appropriate outputs to take account of the 

uncertainty in global model configuration within impacts studies that are influencing 

current decisions on major investments in flood risk management and water resources. 
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1. Introduction 

 

Evidence from observed trends in climate variables point towards an intensification in 

the global hydrological cycle (Huntington, 2006), but large uncertainties remain,at the 

regional and local scales that are most relevant for climate change impacts studies. 

Future climate scenarios for precipitation and temperature are usually derived from 

General Circulation Models (GCMs) projections for given time slices, and are subject to 

considerable uncertainty arising from various sources listed by Giorgi (2005). 

 

The “cascade of uncertainties” leading to regional scenarios as described by Jones 

(2000) and New and Hulme (2000) includes the uncertainty in natural forcing in terms 

of greenhouse gas emissions, the uncertainty in global model configuration, and the 

uncertainty resulting from the downscaling step. In addition of these uncertainties are 

those related to specific impact models, for example the rainfall-runoff models used for 

water resources impact studies (see for example Wilby and Harris, 2006). 

 

The uncertainty in global model configuration has long been recognised as one of the 

most important part of the overall uncertainty, especially when considering the first 

decades of the 21st century when the different emissions scenarios do not lead to 

dramatically different climate responses. Many studies thus recommend the use of an 

ensemble GCM outputs whose scatter could be taken as a measure of GCM 

uncertainties (see for example McAveney et al., 2001; Benestad, 2004). 

 



Developing multi-GCM ensembles at the global and regional scale requires 

consideration of the different strengths and weaknesses displayed by individual GCMs. 

To this aim, Giorgi and Mearns (2002) proposed the Reliability Average Ensemble 

(REA) method where GCM raw projections are assigned weights derived from a 

performance criterion, which reflects the ability to reproduce the present-day climate, 

and a convergence criterion, defined as the deviation of the individual projection of 

change with respect to the central tendency of the ensemble. Min et al. (2004) used 

weights based on based on skill scores proposed by Taylor (2001). Tebaldi et al. (2005) 

extended the REA approach by using a Bayesian approach and defining a formal 

statistical model for deriving probabilities from an ensemble of projections. The above 

studies and more recent ones using similar Bayesian approaches (see for example Furrer 

et al., 2006; Greene et al., 2006) provided multi-model climate projections either for 

large sub-continental regions or at a grid scale comparable to the ones from individual 

GCMs. 

 

In parallel, and in order to get projected scenarios at the scale required for impact 

studies, many different downscaling techniques have been developed over the last 

decade. Two main approaches can be identified: the nesting of high-resolution regional 

climate models (RCMs) in GCMs (dynamical downscaling) and the statistical 

representation of desired fields from the coarse resolution GCM data (statistical 

downscaling). As dynamical downscaling is very computationally expensive, only a few 

experiments involved a RCM driven by a set of different GCMs (Räisänen et al., 2004). 

Similarly, few large experiments involving statistical downscaling from multi-GCMs 



ensemble have been conducted. Indeed, the calibration of this kind of statistical models 

is relatively time consuming (Prudhomme, 2005). 

 

Building on these limitations of fine-scale multi-model ensemble experiments, this 

article proposes a framework to develop high-resolution multi-model scenarios which 

integrate empirical downscaling techniques. This framework is applied to the United 

Kingdom to derive 21st century climate scenarios at a 5km grid scale. Section  2 presents 

the data used in this study, and Section  3 describes the methods employed to obtain 

multi-model fine-scale climate scenarios. The different steps of the data processing 

framework are assessed in Section  4 for the baseline period. Projected seasonal mean 

changes for three thirty-year periods of the 21st century are presented and compared 

with recent European or UK studies in Section  5, and Section  6 shows results on 

interannual variability for present and future climate. 

 

2. Data 

 

Water resources are dependent upon two main primary variables, which are 

precipitation and temperature (due to its influence of potential evapotranspiration). 

Together with catchment properties, the monthly pattern of these two variables controls 

the seasonal pattern of river flows and groundwater recharge. Consequently, climate 

scenarios developed in this paper focus only on precipitation and temperature variables. 

 

The baseline reference data for precipitation and temperature were extracted from a 

gridded data set elaborated by the Met Office (Perry and Hollis, 2005). This observed 



data set includes monthly time series for precipitation and temperature for the 1961-

1990 period (hereafter referred to as the baseline period) over a 5 km grid covering the 

United Kingdom. Precipitation and temperature outputs from 6 Global Circulation 

Models (GCMs) were extracted from the IPCC-DDC website1 (see Table 1). The GCM 

runs considered in this study are part of the panel used to produce the Third Assessment 

Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC, 2001) and 

cover both A2 and B2 emissions scenarios (Nakicenovic et al., 2000). In this study, we 

considered three thirty-year time slices centered around the 2020s, the 2050s, and the 

2080s. 

 

3. Description of the data processing framework 

 

3.1. Land mask management 

 

To study the impact of climate change on land surface processes, only GCM outputs for 

land cells should be considered, as rainfall and more particularly temperature patterns 

are influenced by the nature of the underlying surface. As the different islands 

composing the UK have complex coastlines, many parts of the country are not within 

the land mask of one or more GCMs from the set described in Table 1. The process of 

deriving “land” values is crucial in order to obtain realistic values for some parts of the 

UK, for example North-East England values as computed by HadCM3. The commonly 

used approach, used for example in the GCM data archive for UK accompanying the 

SDSM tool (Wilby et al., 2002), is to take the average values of adjacent cells (Wilby 

and Dawson, 2004). 

                                                           
1 http.//ipcc-ddc.cru.uea.ac.uk 



 

The procedure followed here to derive realistic values for a particular sea cell covering 

land includes four main steps: (1) identify land cells among the nine surrounding cells; 

(2) apply the two-sided Kolmogorov-Smirnov test (Massey, 1951) to compare monthly 

distributions of cell-averaged observed data for the sea cell and for each identified 

surrounding land cell. The observed data have here been taken from the gridded data set 

derived by Perry and Hollis (2005); (3) Derivation of monthly weights for each 

surrounding land cell, taken as one minus the corresponding test statistic; (4) 

Calculation of appropriate ‘land values’ for the sea cell based on the weighted average 

of surrounding GCM-derived land cell values. 

 

This procedure has been used for both precipitation and temperature data. It allows 

taking account of the actual similarity between distributions for the baseline period and 

does not rely only on closeness or other empirical and cell-specific criteria to define 

GCM-derived “land” values for sea cells. 

 

3.2. Bias correction 

 

GCM outputs suffer also from biases or systematic errors due to an imperfect model 

description of the underlying physical processes. A bias-correction scheme based on a 

“quantile-based mapping” has been adapted from the approach described by Wood et al. 

(2002, 2004). The principle is to condition the values produced by the GCM for the 

target period on the correspondence between the observed and control baseline 

climatologies. 



 

At the GCM grid scale, theoretical statistical distributions are fitted to the cell-averaged 

observed values for each month, taken from the 5 km gridded data set. A similar fitting 

is applied to the GCM control run time series. For each month, rainfall and temperature 

time series are fitted respectively to gamma and normal distributions. These choices 

have been made accordingly to recent water resources studies (Prudhomme et al., 2005) 

and verified by computing chi square hypothesis tests which results are shown for each 

GCM in  

Figure 1 for precipitation (lower panels) and temperature (upper panels).  

Figure 1 shows that the hypothesis of a gamma distribution for precipitation is verified 

in most cases for the control runs but not for some specific combinations of month and 

GCM, for example January and August for HadCM3, and October for ECHAM4. 

Similarly, the test for a normal distribution for control run temperature only fails for 

some specific cases, like March for HadCM3, September for GFDL-30, April and May 

for ECHAM4, and April for CGCM2. Moreover, both tests performed generally better 

on observed data. In the following, we consequently assumed that the time series 

actually followed the theoretical distributions. It has to be noted that the spatial 

resolution over the UK, evaluated in terms of cells covering some UK land, varies 

considerably from one GCM to another, going from 15 cells for ECHAM4 to only 4 for 

CSSR/NIES (see Table 1). 

 

Considering a projected value for one month from a GCM-derived time series above a 

specific cell, it is attributed a probability P in the theoretical distribution for the control 

run. The value corresponding to the probability P is then extracted from the distribution 



for the observed time series for the same month and the same cell. The new value is 

taken as the bias-corrected value. This process, illustrated in  

Figure 2, is repeated for all values in GCM time series. It thus constitutes a step forward 

the commonly used monthly factors method. 

 

3.3. Spatial disaggregation 

 

The downscaling approach used here requires a fine-scale gridded monthly time series 

for total precipitation and mean temperature. Once again, the 5 km grid data set derived 

by Perry and Hollis (2005) was used here. For each GCM, cell-averaged observed 

monthly means for precipitation and temperature for the baseline period have been 

computed at the GCM grid scale and then interpolated back bi-linearly to the finer grid 

scale. Precipitation monthly anomalies are computed at the finer grid scale by dividing 

the observed monthly means by the resulting monthly means. Temperature monthly 

anomalies have similarly been computed by subtracting the resulting monthly means for 

temperature from the observed monthly means. The outputs are GCM-specific 5 km 

grid of spatial anomalies for each month of the year, showing the difference between the 

finer grid and the corresponding GCM grid.  

 

Spatial fields from each GCM are first bias-corrected thanks to the procedure detailed 

above. Monthly time series are then bi-linearly interpolated to the finer grid scale, and 

finally multiplied by (for precipitation) or summed with (for temperature) monthly 

spatial anomalies to get a finer spatial pattern. This approach makes use of both aspects 

of GCM outputs, which can be interpreted as point or areal quantity, as pointed out by 



Skelly and Henderson-Sellers (1996) and Osborn (1997). The spatial disaggregation 

method used here implies that the small-scale variability depends only on the synoptic 

scale (Hewitson and Crane, 2006), and assumes that the spatial variation within a grid 

square will remain unchanged in the future. 

 

Widmann et al. (2003) used a similar approach called “local scaling” to demonstrate the 

potential of GCM precipitation as a predictor for precipitation downscaling in the north-

western United States. This approach was then used by Salathé (2003) to simulate 

streamflow in a rainshadow river basin and compared with more sophisticated 

techniques. This simple downscaling technique has also been used for the elaboration of 

climate change scenarios for the UK (Hulme and Jenkins, 1998). 

 

The bias-correction and spatial disaggregation have been used by Wood et al. (2004) to 

downscale outputs from the PCM (Parallel Climate Model) GCM (resolution ~2.8 

degrees) to a 0.125 degrees resolution grid corresponding to an observed climatology 

for the US Pacific Nortwest domain. They compared three downscaling approaches 

through a twenty-year retrospective analysis: linear interpolation, spatial disaggregation 

and bias-corrected spatial disaggregation. The corresponding meteorological outputs 

were then used to drive a macroscale hydrological model. Wood et al. (2004) conclude 

that the later approach, which is used in the present study, is successful in reproducing 

observed hydrology at the monthly scale. 

 

4. Method assessment 

 



The impact of the overall method on GCM data for the baseline period can be assessed 

by plotting Taylor diagrams (Taylor, 2001) with reference to the observed climatology. 

This type of diagram has been widely used for global climate model evaluation and 

comparison (see for example Covey, 2003) and is here applied to assess different stages 

of refinement of GCM outputs. 

 

The Taylor diagrams for rainfall and temperature twelve months cycle averaged over 

the UK 5 km grid cells are shown respectively in Figure 3 and Figure 4. In each 

diagram, the radial coordinate gives the magnitude of total standard deviation of the 

data considered, and the angular coordinate gives the correlation with the corresponding 

observed field. It follows that the distance between the reference point and any model’s 

point is proportional to the root mean square model error. For each variable, a model 

score has be computed to quantify the skill reached after each processing step by using 

the following formula proposed by Taylor (2001): 
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where fσ̂ is the normalized standard deviation of the GCM field, and R the correlation 

coefficient between the GCM-derived and observed fields. R0 represents the maximum 

correlation attainable and is here equal to 1. 

 

The effects of each processing step on precipitation fields can be assessed by examining 

Figure 3. It first shows that these effects are roughly similar for all GCMs considered. 



The land management step reduces the variance by considering only annual cycles 

related to land cells which show different climatological patterns from sea cells. The 

bias correction step increases slightly the correlation and particularly brings the variance 

values much closer to the one for the observed annual cycle, highlighting the 

importance of this step. As can be expected, interpolation increases the correlation and 

reduces slightly the variance. Spatial disaggregation finalizes the process by assuring 

the equality of observed and GCM-derived precipitation annual cycles. As a 

consequence of the bias correction and spatial disaggregation steps, this property is also 

verified for every 5 km grid cell. 

 

Figure 4 presents a slightly different picture for temperature annual cycles. It first has to 

be noted that the initial discrepancies in variance are far less than for precipitation, with 

specific GCMs showing either higher or lower variance than the observed one. 

Correlation between raw GCM and observed climatologies is also higher than for 

precipitation. These two comments confirm previous general comparisons made at the 

global scale that GCMs raw computation of temperature is far more reliable than that of 

precipitation (McAveney et al., 2001). For most of the models, the land management 

step tends to reduce the error in variance. The bias correction dramatically increases the 

correlation and closely gathers statistics from all GCMs. As temperature is at a coarse 

scale less spatially variable than precipitation, the improvement due to interpolation is 

here very limited. The addition of spatial anomalies allows taking account of local 

features like elevation to reach the agreement between observed and GCM-derived 

temperature annual cycles at the 5 km grid scale. 

 



Furthermore, the two-sided Kolmogorov-Smirnov test has been used to compare for 

each 5 km grid cell the statistical distributions of observed and ensemble GCM-derived 

baseline precipitation and temperature. The hypothesis of common distributions is 

verified at the 95% confidence level for each month for more than 96% of the UK for 

precipitation, and for more than 99% for temperature. 

 

5. Seasonal changes for the UK 

 

For a given time slice and a given emissions scenario, projections from the six different 

GCMs are considered in the analysis as equally likely representations of future climate. 

This hypothesis takes root in the application of the bias-correction scheme described in 

section  3.2. Consequently, ensemble monthly statistics (monthly mean and standard 

deviation) are here computed directly from 6 x 30 years time series. The next sections 

highlight some of the results. In the following, seasons are defined as three-month 

periods: DJF (winter), MAM (spring), JJA (summer), and SON (autumn). 

 

5.1. Precipitation 

 

Figure 5 shows the percent changes in precipitation averaged over the UK, as computed 

by each of the ensemble members along with the ensemble mean. These changes are 

computed for thirty-years periods centred on the 2020s, 2050s, and 2080s with respect 

to the observed baseline climate. Results from the ensemble means show an increase in 

precipitation in winter, larger under the A2 scenario than under the B2 scenario. This 

change in precipitation becomes larger towards the end of the century, reaching +35% 



in the 2080s according to the ensemble mean. The intra-ensemble variability also 

increases with time, with some GCMs showing an increase of 60 to 80 percent. The 

overall pattern for spring is broadly similar from winter, but with a smaller magnitude 

of changes. It also has to be noted that changes under the B2 scenario are slightly larger 

than under the A2 scenario. In summer, precipitation decreases linearly with time, up to 

-20% in the 2080s under the A2 scenario. As for winter, changes are smaller under the 

B2 scenario, and intra-ensemble variability increases with time. The pattern for autumn 

is quite different, showing a relatively stable increase of 5 to 9% for all three future 

periods compared to 1961-1990. 

 

Figure 6 presents the spatial pattern of the ensemble mean change in seasonal 

precipitation for the A2 emissions scenario. The overall pattern for winter is a 

homogeneous increase in precipitation over the UK. Spring precipitation is also 

expected to increase, with larger changes (more than +25% in the 2080s) in the North-

West of the country, compared to a relatively small +5% in South-East England. In 

summer, projected precipitations are expected to be far smaller than for the baseline 

period, with larger changes (up to more than 30% in the 2080s) in the South-East, to be 

compared with less than 10% decrease in North-West Scotland. The overall pattern for 

the autumn is very similar to the one for spring, but with slightly smaller changes. When 

looking towards the end of the century, differences between the north and south of the 

UK become more and more prominent, even for autumn when the UK-averaged change 

is relatively stable (see Figure 5). The spatial patterns of changes under the B2 scenario 

are not shown for brevity, but it is important to note that the north-south differences 



computed under the A2 scenario are largely reduced, particularly in spring when both 

scenarios yet exhibit similar UK-averaged changes. 

 

5.2. Temperature 

 

The percent changes in temperature averaged over the UK, as given by each ensemble 

members and the ensemble mean, are shown in Figure 7. The overall pattern for the UK 

is far simpler than for precipitation, as it follows the global warming pattern computed 

by GCMs. Accordingly, the rate of warming is smaller under the B2 scenario. The 

projected ensemble means reach +4°C in summer for the 2080s under the A2 scenario, 

but individual GCMs show an increase of up to 6.5°C. Indeed, the intra-ensemble 

variability increases significantly with time for all seasons. 

 

Figure 8 presents the spatial pattern of the ensemble-averaged change in seasonal 

temperature. In winter, the warming is expected to be larger in the South-East England 

than in the Scottish Highlands. Simulations for summer and autumn show a very similar 

spatial pattern, with an increase of more than 4.4°C in summer for South-Central 

England. Changes for spring precipitation are on the contrary very homogeneous over 

the UK. As for precipitation, the north-south differences are reduced under the B2 

scenario, especially for summer temperatures (not shown). 

 

5.3. Comparison with results from previous UK and European studies 

 



Several studies recently focused on climate changes over UK and Europe for the 2080s, 

using dynamical downscaling approaches. The following paragraphs propose some 

qualitative comparisons between results from these studies and the ones described in the 

two previous sections. For clarity purpose, results from each ensemble member will be 

referred as the name of the corresponding GCM followed by “-em”, and ensemble 

scenarios will be referred to as GCME. 

 

First, maps shown in Figure 6 and Figure 8 have been drawn specifically for 

comparison with similar maps produced for the UKCIP02 scenarios (Hulme et al., 2002, 

p. 31 and 35). These scenarios are based on runs from the Hadley Centre regional model 

HadRM3 driven by HadCM3 for the 2080s under the A2 emissions scenario (called 

Medium-High Emissions scenario). They form the basis of the UK Climate Impact 

Programme scenarios (UKCIP02) that are used widely for regional and local climate 

change impacts studies in England and Wales, Scotland and Northern Ireland. Changes 

for other time-slices and emissions scenarios were derived using simple scaling factors. 

Consequently, the following comparisons will focus on the 2080s and A2 scenario to 

ensure consistency with the original GCM outputs. However, UK-averaged results for 

both A2 and B2 emissions scenarios and for the three time-slices are shown for 

comparison in Figure 5 for precipitation and Figure 7 for temperature. 

 

The UKCIP02 precipitation scenario for winter shows very spatially variable changes, 

ranging from 0 to 30%, when ensemble-mean projections show larger and particularly 

homogenous changes. On the other hand, north-south differences mentioned in Section 

 5.1 for other seasons were well reproduced by this UKCIP02 scenario in term of the 



amplitude of spatial variability, but the magnitudes of changes are very different from 

the ensemble means. Indeed, these UKCIP02 changes reflect those computed by the 

driving HadCM3. In Figure 5, long arrows indicate changes computed from HadCM3 

ensemble member outputs (HadCM3-em). Compared to the ensemble result, HadCM3-

em –as well as HadRM3 through UKCIP02– shows smaller precipitation increase (or 

even decrease) in winter, spring and autumn, and a larger precipitation decrease in 

summer. Indeed, Hulme et al. (2002) have already pointed out that HadCM3 (and 

consequently UKCIP02 scenarios) shows the driest summer projections among the 

GCMs considered here. 

 

UKCIP02 temperature scenario for winter and summer show more spatially variable 

changes than projections from GCME. According to the ensemble results, Scotland 

should warm less than projected by UKCIP02 scenario, leading to a smaller UK-

averaged warming. This pattern is in agreement with the results from HadCM3-em, 

especially for winter and summer (see Figure 7). The homogeneous changes of 2.5-3°C 

projected by UKCIP02 and GCME for spring agree well, but UKCIP02 autumn changes 

are larger than the ones projected GCME, which cannot be explained by HadCM3-em. 

 

In the PRUDENCE2 project, a range of global and regional climate models were used as 

a common framework to produce climate change projection s for Europe and to advance 

the uncertainty analysis of regional climate change (Christensen et al., 2002).  

 

                                                           
2 Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and 
Effects: http://prudence.dmi.dk/ 



Giorgi et al. (2004) used the regional climate model RegCM (Pal et al., 2000) driven by 

the HadAM3H version of the Hadley Centre GCM and averaged results for the 2080s 

under the A2 and B2 scenarios over different European sub-regions. Precipitation and 

temperature changes obtained for the British Isles are broadly similar to the ones 

obtained in the present study by HadCM3-em (indicated by long arrows in Figure 5), 

and thus suffer from the same biases as in UKCIP02 scenario. 

 

Rowell (2006) computed spatially averaged changes for the British Isles for the 2080s 

based on 9 different RCMs driven once again by HadAM3H under the A2 emissions 

scenario. Results show a dispersion of precipitation changes in winter and summer 

spanning approximately from the HadCM3-em value to a much smaller change. For the 

intermediate seasons, results indicate either positive or negative precipitation changes, 

whereas HadCM3-em shows a small but noticeable increase. Comparison for 

temperature results is more clear-cut, as the multi-RCMs results are regrouped within a 

0.5 to 1°C width range centred on the HadCM3-em value, for all seasons but autumn, 

when changes are closer to results from GCME. It has to be noted that this autumn 

pattern can also be found in RegCM simulations described by Giorgi et al. (2004). 

 

Déqué et al. (2005) used nine regional climate models all driven by HadAM3H to 

investigate the response of the A2 emissions forcings for the 2080s in Europe. The 

winter and summer temperature response over the UK computed as the mean of the nine 

RCMs simulations response is once again lower than results from GCME, as is the 

response from HadCM3-em. 

 



Each study referenced above produced scenarios based on projections from a single 

GCM, which was one or another version of the Hadley Centre GCM. This brief review 

points to the fact that UK-averaged changes from all these studies, along with the 

UKCIP02 main spatial features, are very close to results obtained by the HadCM3-em, 

at least for extreme seasons. Furthermore, Figure 5 and Figure 7 show that projections 

from this ensemble member differ significantly from the ensemble mean projection. 

 

Räisänen et al. (2004) compared winter and summer results for Europe computed by the 

Swedish Rossby Centre regional model (RCAO, Doscher et al., 2002) driven by two 

different GCMs (HadAM3H and ECHAM4/OPYC3) under both A2 and B2 scenarios 

for the 2080s. One of the most interesting conclusions in the context of the present 

study is that the magnitude and the geographical patterns of precipitation and 

temperature change differ substantially when using different driving GCMs. In Figure 5 

and Figure 7, long and short arrows indicate respectively HadCM3-em and 

ECHAM4/OPYC3-em. These two GCMs individually give very different UK-averaged 

changes, and temperature changes are spread on both sides of the ensemble mean 

values. Not surprisingly, when comparing these values with the ones obtained by 

Räisänen et al. (2004), it can be seen that UK-averaged changes computed with each 

driving GCM scenario are very close to the corresponding ensemble member values, for 

both emissions scenarios and for both extreme seasons. It leads to the conclusion that 

the largest part of uncertainty in UK climate changes is due to the GCM formulation, 

and not to the downscaling method used. This is supported by Rowell (2006), who 

found that the uncertainty in the formulation of the RCM has a relatively small impact 

on the range of possible outcomes of future UK seasonal climate. 



 

It is important to note that projected changes from all the above studies are relative to 

control simulations, and not to the observed baseline climate. In spite of this difference 

from the present study, the above comparisons indicate a relatively good agreement on 

the magnitude of these changes when considering individual ensemble members and 

their corresponding dynamically downscaled counterparts. 

 

5.4. Comparison with observed trends 

 

The above ensemble predictions can also be compared with observed trends in the UK. 

Perry (2006) compared the change in mean temperature between the 1961-1990 and 

1991-2004 averages for the 5 km grid used in the present study and found an overall 

warming which is more pronounced for the south-east of the country in all seasons. This 

spatial pattern agrees well to both previous studies (Jones and Lister, 2004) and to the 

ensemble predictions shown in Figure 8. Perry (2006) also studied the change in 

precipitation between 1961 and 2004. The overall trends in winter (overall increase) and 

in summer (overall decrease, more pronounced in the south) compares well with results 

presented in Figure 6. For intermediate seasons, the great heterogeneity in the observed 

trends makes the comparison much more difficult. Moreover, the detailed spatial pattern 

of trends in Scotland is not really consistent with projected changes, as already shown 

by Barnett et al. (2006). 

 

6. Interannual variability 

 



We here investigate the interannual variability in the baseline and future time series. 

This variability and its changes may have substantial consequences compared to the 

changes in seasonal means only, for example on the frequency of multi-season 

droughts. The linear trends from each 30-year seasonal time series from individual 

GCMs were first removed. As pointed out by Giorgi et al. (2004), this step is necessary 

to filter out the effects of trends within each 30-year period, including the baseline 

period. The individual GCM and ensemble standard deviation for each run were then 

computed from these detrended time series. A similar process was applied to observed 

reference time series. The standard deviation was here used as a measure of temperature 

interannual variability, and the coefficient of variation was adopted for precipitation, in 

order to make results independent from the mean. 

 

6.1. Precipitation 

 

Figure 9 shows the precipitation interannual coefficient of variation, for the baseline 

period (here noted as the 1970s) and for the three future periods considered. The first 

point worth noting is that the baseline period interannual variability is underestimated 

for all seasons. Indeed, the spatial variability of this measure is very large within the 

observed data set, with high values in specific parts of the country, varying from one 

season to another (not shown). This spatial variability is not reproduced with the 

approach presented in Section  3 which focused primarily on the fitting of means. 

 

Changes in interannual variability can still be investigated by comparing future 

scenarios with corresponding control runs. According to results from GCME, the 



summer season should be the only one to experience a significant increase in variability 

for the end of the century. Giorgi et al. (2004) and Rowell (2005) arrived to the same 

conclusion when using respectively the RegCM RCM driven by HadAM3H and the 

high resolution GCM HadAM3P. Results from these two studies qualitatively compare 

well with results from the individual HadCM3 ensemble member, which shows a 

decrease in winter, a small decrease in spring, a increase in summer larger than the one 

shown by GCME, and a slight decrease in autumn. 

 

6.2. Temperature 

 

Figure 10 shows the temperature interannual standard deviation, for the baseline period 

and for the three future periods considered. Contrary to precipitation, the baseline period 

variability is relatively well reproduced by GCME, with only slight discrepancies in 

winter and autumn, resulting once again from the spatial variability of this measure in 

the observed climate (not shown). Predicted changes between GCME control and future 

scenarios are only noticeable for winter (decrease) and summer (increase). It can be 

noted that the summer increase predicted by HadCM3-em is far larger than the one from 

GCME (see arrows in Figure 10). Not surprisingly, this significant and specific pattern 

has been pointed out by Giorgi et al. (2004) and Rowell (2005) when studying results 

from Hadley Centre GCMs.  

 

7. Conclusions 

 



This article presented a framework for developing multi-GCMs fine-scale ensemble 

projections. This three-step framework is easy to implement and not computationally 

expensive. It thus provides a simple but nevertheless robust approach to combine 

outputs from different GCMs. Indeed, regional downscaling methods require coupled 

GCM-RCM experiments which are very computationally expensive and may raise 

modelling inconsistencies between the two spatial scales. On the other hand, commonly 

used statistical downscaling methods as SDSM (Wilby et al., 2002) are ideal for 

detailed local studies but are less practical for national scale impact studies. 

 

The bias correction step performed on each variable allows considering outputs from 

different GCMs as an equally weighted ensemble. The quantile-based mapping avoids 

choosing weighting criteria as in the original REA method described by Giorgi and 

Mearns (2002). The empirical-statistical downscaling method described in Section  3.3 

appears to be robust enough to provide consistent spatial patterns, as demonstrated by 

previous studies (Wood et al., 2002; Salathé, 2003), and more detailed multi-model 

comparisons between statistical downscaling methods for three catchment case studies 

are currently under way. Moreover, as shown in Section 15, results from HadCM3-em 

compare well with the ones from different RCMs driven by the Hadley Centre GCM, 

showing that the uncertainty in downscaling technique is much smaller than the 

uncertainty related to global model configuration. 

 

In the UK and a number of other European countries, climate change is being integrated 

into decision making processes at the national, regional and local scales. The impacts of 

climate change affect major investment decisions in flood risk management, water 



resources planning, spatial planning and implementation of the Water Framework 

Directive. Therefore, the approach presented in this paper can be used for the 

integration of uncertainties related to climate change into decision making processes for 

a wide range of applications (Beven et al., 2006). Indeed, it provides ensemble high 

resolution future climate monthly time series which can be directly used by impact 

models to provide regional and catchment scale scenarios. 

 

The uncertainty in the global model structure is considered as the largest one in the 

process of deriving climate projections for impact studies, and thus requires a particular 

attention (Prudhomme, 2006, Wilby and Harris, 2006). This uncertainty can be 

described more accurately as the number of GCMs developed around the world 

increases. Indeed, more than twenty GCMs are currently considered within the Fourth 

Assessment Report (AR4) of the IPCC, and this framework can actually be useful both 

to develop multi-model projections and to estimate the uncertainty on impacts derived 

from the configuration of the global models. 
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Table 1: Summary of GCMs used. TCR (Transient Climate response) shows the 

increase in global temperature as response to a standardized 1%/year increase in CO2 at 

the time of CO2 doubling (IPCC, 2001). Last column shows the number of cells 

covering some UK land. In brackets is given the number of land cells for the UK. 

Model Research Centre Reference TCR 

(°C) 

Number 

of cells 

HadCM3 Hadley Centre for 

Climate Prediction and 

Research, UK 

(Johns et al., 

2003) 

2.0 13 (5) 

CGCM2 Canadian Center for 

Climate Modelling and 

Analysis, Canada 

(Flato and Boer, 

2001) 

1.92 11 (6) 

CSIRO-mk2 Commonwealth 

Scientific and Industrial 

Research Organisation, 

Australia 

(Gordon and 

O’Farrell, 1997) 

2.0 9 (4) 

GFDL-R30 Geophysical Fluid 

Dynamics Laboratory, 

USA 

(Delworth et al., 

2002) 

1.96 15 (7) 

CCSR/NIES Center for Climate 

System Research / 

(Emori et al., 

1999) 

3.1 4 (1) 



National Institute for 

Environmental Studies, 

Japan 

ECHAM4/OPYC3 Max Planck Institute für 

Meteorologie, Germany 

(Stendel et al., 

2002) 

1.4 16 (7) 
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Figure 1. Number of GCM cells above UK land with monthly precipitation following a 

gamma distribution (lower panels) and with monthly temperature following a normal 

distribution (upper panels) according to the chi-square test. White circles denote 

observed data spatially averaged to the GCM grid and black filled circles represent 

GCM control run outputs. Dashed lines show the total number of cells above UK land 

as given in Table 1. 
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Figure 2. Illustration of the bias correction process on January precipitation amounts 

computed by HadCM3 above Wales for the 2080s. Solid and dotted lines represent 

gamma distributions fitted respectively to cell-averaged observed data and GCM-

derived control data. Black circles denote raw values projected by HadCM3 for the 

2080s, and arrow ends show corresponding bias-corrected values. 
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Figure 3. Taylor diagram for normalized pattern statistics describing baseline period 

twelve months annual cycles of precipitation at the 5 km grid scale. White markers 

correspond to raw GCM data. Light, medium and dark grey indicate respectively data 

after land mask management, bias correction, and interpolation. The black circle 

corresponds both to observed climatology and spatially disaggregated climatologies for 

each GCM. The dashed circular line corresponds to the reference standard deviation in 

the annual cycle. Dotted contour lines represent the skill score as given by equation (1). 

See text for interpretation. 
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Figure 4. As for Figure 3, but for temperature fields. 
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Figure 5. Projected changes for seasonal mean precipitation averaged over the UK, in 

percent of observed baseline climate. Points represent changes from individual GCMs 

and for three thirty-year periods. For each period, projected changes contain two groups 

of points at different locations on the x-axis representing A2 (left) and B2 (right) 

emissions scenarios. Grey filled squares and diamonds show multi-model ensemble 

means, respectively under the A2 and B2 scenarios. White squares and diamonds 

indicate corresponding UKCIP02 means. For comparison with previous studies, long 

arrows indicate HadCM3 ensemble member changes, and short arrows in winter and 

summer panels indicate ECHAM4 ensemble member changes (see text for details). 

 



 

 

 



Figure 6. Ensemble seasonal mean precipitation changes for the UK under the A2 

emissions scenario. Changes are given in percent of the observed baseline means. 
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Figure 7. As for Figure 5, but for temperature. Changes are given as differences in 

degrees Centigrade from observed baseline climate. 

 



 

 

 



Figure 8. As for Figure 6, but for temperature. Changes are given as absolute difference 

in degrees centigrade from the observed baseline means. 
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Figure 9. Precipitation interannual variability averaged over the UK, computed as thirty-

year period coefficient of variation. Results are shown for the baseline period and for 

the three target periods. Points represent results from individual ensemble members. For 

each period, two groups of points are shown at different locations on the x-axis 

representing A2 (left) and B2 (right) scenarios. Squares and diamonds show multi-

model ensemble values, respectively under the A2 and B2 scenarios. White circle 

represent observed baseline interannual variability. For comparison with previous 

studies, arrows indicate HadCM3-em values for the baseline period and for the 2080s 

(see text for details). 
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Figure 10. Temperature interannual variability averaged over the UK, computed as 

thirty-year periods standard deviation. Notations are the same as for Figure 9. 

 


